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Intro

▶ Lecture 1: Sequent calculi
▶ Lecture 2: Labelled sequent calculi
▶ In this lecture we start looking at structured calculi, that

extend sequent calculi with additional structural connectives

In particular, we now look at hypersequent calculi
▶ Simple generalisation of sequent calculi
▶ Introduced by [Mints, 1968] [Pottinger, 1983], [Avron, 1987] to

provide cut-free calculi for modal and relevant logics

☞ In this lecture we focus only on modal logic S5
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S5, again

Axiomatisation of S5

K + t □A → A
4 □A → □□A
b A ∨ □¬□A

or
K + t □A → A

5 □A ∨ □¬□A

Semantics of S5
Kripke models with equivalence relation

Complexity of S5
The validity/derivability problem for S5 is coNP-complete

Recap
▶ No cut-free, Gentzen-style sequent calculus for S5 (Lecture 1)
▶ Cut-free labelled calculus for S5 (Lecture 2)
▶ What about an internal, structured calculus for S5?
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A hypersequent calculus for S5

Main reference for this calculus
▶ A cut-free simple sequent calculus for modal logic S5

[Poggiolesi, 2008]: Definition of the calculus and structural
analysis

Further references
▶ [Lellmann, 2016]: Optimal proof-search procedure in the

calculus
▶ [Restall, 2007]: A version of the calculus with explicit structural

rules
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Hypersequent

Hypersequent Finite multiset of sequents, written

Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

where Γ1 ⇒ ∆1, . . . , Γn ⇒ ∆n are the components of the
hypersequent

Formula interpretation

i(Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n)

=

□(
∧

Γ1 →
∨

∆1) ∨ ... ∨ □(
∧

Γn →
∨

∆n)

☞ Differently from labelled sequents, hypersequents can be
interpreted as formulas
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A hypersequent calculus for S5

Initial hypersequents and propositional hypersequent rules

init p, Γ⇒ ∆, p { init H | p, Γ⇒ ∆, p

Γ⇒ ∆,A ,B
∨R

Γ⇒ ∆,A ∨ B
{

H | Γ⇒ ∆,A ,B
∨R
H | Γ⇒ ∆,A ∨ B

Modal rules for S5

H | □A , Γ⇒ ∆ | A ,Σ⇒ Π
□L

H | □A , Γ⇒ ∆ | Σ⇒ Π

H | A ,□A , Γ⇒ ∆
□t

L H | □A , Γ⇒ ∆

H | Γ⇒ ∆ | ⇒ A
□R

H | Γ⇒ ∆,□A
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Example of derivation

Example. Derivation of axiom B

A ⇒ A | □A ⇒
□L

⇒ A | □A ⇒
¬R

⇒ A | ⇒ ¬□A
□R

⇒ A ,□¬□A
∨R

⇒ A ∨ □¬□A

Exercise. Derive axioms k, t, 4, 5
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Soundness

Soundness
Theorem. If ⊢HS5 H , then ⊢S5 i(H)

Proof sketch (i). We consider simple instances of the rules

□A ⇒ | A ⇒ B
□L

□A ⇒ | ⇒ B

i. ⊢ □¬□A ∨ □(A → B) (i(P))
ii. ⊢ □¬□A ∨ ¬□¬□A (CPL)
iii. ⊢ ¬□¬□A → □A (axiom 5)
iv. ⊢ □A ∧ □(A → B)→ □B (axiom k)
v. ⊢ □¬□A ∨ □B = i(C) (by classical

reasoning)
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Soundness

Soundness
Theorem. If ⊢HS5 H , then ⊢S5 i(H)

Proof sketch (ii). We consider simple instances of the rules

B ⇒ C | ⇒ A
□R B ⇒ C ,□A

i. ⊢ □(B → C) ∨ □A (i(P))
ii. ⊢ (B → C)→ (B → C ∨ □A) (CPL)
iii. ⊢ □(B → C)→ □(B → C ∨ □A) (ii, by K valid rule)
iv. ⊢ □A → (B → C ∨ □A) (CPL)
v. ⊢ □□A → □(B → C ∨ □A) (iv, by K valid rule)
vi. ⊢ □A → □□A (axiom 4)
vii. ⊢ □A → □(B → C ∨ □A) (from iv, vi)
viii. ⊢ □(B → C ∨ □A) = i(C) (from i, iii, vii)

Exercise. Prove soundness of all the rules of HS5
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Toward syntactic completeness: relevant structural properties

In order to syntactically prove the completeness of HS5, we need
to analyse its structural properties

Relevant structural properties:

1. Hp-invertibility of all rules

2. Hp-admissibility of weakening and contraction

3. Admissibility of cut

☞ Interesting properties on their own
☞ Some dependeces

▶ Hp-admissibility of contraction depends on 1.
▶ Admissibility of cut depends on 1. and 2.
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Structural properties: Hp-invertibility of all rules

Theorem. All rules of HS5 are hp-invertible

Sketch of proof. For each rule, the proof proceeds by induction on the
height h of the derivation of the conclusion.

We consider as an example
the rule □R

H | Γ⇒ ∆ | ⇒ A
□R

H | Γ⇒ ∆,□A

(base case) If h = 0 , then the conclusion H | Γ⇒ ∆,□A is an initial
hypersequent. There are three possibilities:

1. H is an intial hypersequent

2. p ∈ Γ ∩∆ for some p

3. ⊥ ∈ Γ ∩∆

In each of these cases, the premiss H | Γ⇒ ∆ | ⇒ A is an initial
hypersequent, hence it is derivable with height 0.
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Structural properties: Hp-invertibility of all rules

(inductive step) If h > 0, we need to consider the last rule application in
the derivation of the conclusion H | Γ⇒ ∆,□A .

There are two possibilities

1. □A is principal in the last rule application

2. □A is not principal in the last rule application

(case 1.) If □A is principal in the last rule application, then the last rule
application is precisely

H | Γ⇒ ∆ | ⇒ A
□R

H | Γ⇒ ∆,□A

which means that the premiss H | Γ⇒ ∆ | ⇒ A has a derivation of
height h − 1.
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Structural properties: Hp-invertibility of all rules

(case 2.) If □A is not principal in the last rule application, then, since
H , Γ,∆ can be any hypersequent and multisets, the last rule applied can
be any rule of the calculus, hence one needs to consider all of them...

Here we consider as an example the case where the last rule applied is
□R itself. In this case, the last rule application has the form

H ′ | Σ⇒ Π | Γ⇒ ∆,□A | ⇒ B
□R

H ′ | Σ⇒ Π,□B | Γ⇒ ∆,□A

where (H ′ | Σ⇒ Π,□B) = H and the premiss
H ′ | Σ⇒ Π | Γ⇒ ∆,□A | ⇒ B has a derivation of height h − 1.

(Alternatively, one can have □B ∈ ∆, the proof is analogous in this case.)

Then, by the hp-invertibility of □R, that holds at height h − 1 by inductive
hypothesis, H ′ | Σ⇒ Π | Γ⇒ ∆ | ⇒ B | ⇒ A has a derivation D of
height h′ ≤ h − 1. Therefore, by extending D with an application of □R to
this hypersequent, we obtain a derivation of height h′ + 1 ≤ h of
H ′ | Σ⇒ Π,□B | Γ⇒ ∆ | ⇒ A , that is, H | Γ⇒ ∆ | ⇒ A .

qed
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Structural properties: Some relevant structural rules, and cut

Structural rules

H | Γ⇒ ∆
wkL

H | A , Γ⇒ ∆

H | Γ⇒ ∆
wkR

H | Γ⇒ ∆,A

H | A ,A , Γ⇒ ∆
ctrL

H | A , Γ⇒ ∆

H | Γ⇒ ∆,A ,A
ctrR

H | Γ⇒ ∆,A

Hwkext
H | Γ⇒ ∆

H | Γ⇒ ∆ | Γ⇒ ∆
ctrext

H | Γ⇒ ∆

☞ Note: external forms of weakening and contraction

The cut rule

H | Γ⇒ ∆,A H ′ | A , Γ′ ⇒ ∆′
cut

H | H ′ | Γ, Γ′ ⇒ ∆,∆′
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Structural properties: Hp-admissibility of structural rules

Theorem. Left, right and external weakening and contraction are
hp-admissible in HS5

Sketch of proof. By induction on the height of the derivation of the
premiss (exercise)

Hint. In order to prove the hp-admissibility of some structural rules
you may need the following (nice) rule

H | Γ⇒ ∆ | Σ⇒ Πmerge
H | Γ,Σ⇒ ∆,Π

Theorem. The rule merge is hp-admissible in HS5

Sketch of proof. By induction on the height of the derivation of the
premiss (exercise)
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Structural properties: Cut admissibility

Theorem. Cut is admissible in HS5

Proof sketch. By induction on the complexity of the cut formula and
subinduction on the cut height.

As an example, consider the following derivation, with the cut formula □A
principal in the last rule application in both premisses of cut

H | Γ⇒ ∆ | ⇒ A
□R

H | Γ⇒ ∆,□A
H ′ | A ,□A , Γ′ ⇒ ∆′

□t
LH ′ | □A , Γ′ ⇒ ∆′

cut
H | H ′ | Γ, Γ′ ⇒ ∆,∆′

Converted into the following, with one application of cut at a lower height,
and one application of cut with a cut formula of lower complexity

H | Γ⇒ ∆ | ⇒ A
H | Γ⇒ ∆,□A H ′ | A ,□A , Γ′ ⇒ ∆′

cut
H | H ′ | Γ, Γ′,A ⇒ ∆,∆′

cut
H | H | H ′ | Γ⇒ ∆ | Γ, Γ′ ⇒ ∆,∆′

wk∗
H | H | H ′ | Γ, Γ′ ⇒ ∆,∆′ | Γ, Γ′ ⇒ ∆,∆′

ctrext × 2
H | H ′ | Γ, Γ′ ⇒ ∆,∆′

(where wk∗ denotes multiple applications of (left and right) weakening
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Completeness

Completeness
Theorem. If ⊢S5 A , then ⊢HS5 ⇒ A

Proof sketch.
▶ All axioms of S5 are derivable in HS5 (exercise)
▶ The necessitation rule is admissible in HS5 (exercise)
▶ Modus ponens is simulated by cut
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So far, purely syntactical analysis.
What about a semantics for the calculus?
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Semantics

Two semantics for S5

1. Kripke models with equivalence relation, or

2. Universal semantics M = ⟨W , v⟩
▶ No binary relation
▶ M,w ⊩ □A iff for all u ∈ W , M, u ⊩ A

☞ □A true somewere iff A true everywhere

☞ Corresponds to choosing one cluster of a model with
equivalence relation

Notation. We denoteU the class of all universal models
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A semantic intuition of the rules

▶ Different components { different worlds
▶ For each component, formulas on the left true, formulas on

the right false in the corresponding world

H | □A , Γ⇒ ∆ | A ,Σ⇒ Π
□L

x
H | □A , Γ⇒ ∆ | Σ⇒ Π
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A semantic intuition of the rules

▶ Different components { different worlds
▶ For each component, formulas on the left true, formulas on

the right false in the corresponding world

H | Γ⇒ ∆ | ⇒ A
□R

x
H | Γ⇒ ∆,□A
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Soundness

Valid hypersequent M |= H iff ∃ Γ⇒ ∆ ∈ H : M |= Γ⇒ ∆

☞ Semantically, a hypersequent is a disjunction of validities
☞ That is, H valid iff one component is valid

Soundness
Theorem. If ⊢HS5 H , then |=U H

Proof sketch. One needs to show that the inital hypersequents are
valid inU (trivial) and that all rules of HS5 preserve validity in
universal models (exercise).
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Toward semantic completeness of HS5

We now prove the opposite direction (completeness of HS5),
namely that

if |=U H , then ⊢HS5 H

1. First, we define a terminating (optimal) proof-search
procedure in HS5

2. Then, we show that every failed proof constructed according
to this procedure provides a countermodel of the root
hypersequent: that is, if ⊬HS5 H , then ̸|=U H
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A proof-search procedure in HS5

Main reference [Lellmann, 2016]
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Cumulative rules

As a first step, we consider a cumulative formulation of HS5

Comulative formulation of a rule
The principal formula is copied to the premiss(es)

e.g. H | Γ⇒ ∆,A ∨ B ,A ,B
∨R

H | Γ⇒ ∆,A ∨ B

H | A ,A ∨ B , Γ⇒ ∆ H | B ,A ∨ B , Γ⇒ ∆
∨L

H | A ∨ B , Γ⇒ ∆

H | Γ⇒ ∆,□A | ⇒ A
□R

H | Γ⇒ ∆,□A

☞ Remark. The rules □L and □t
L are already in cumulative form

Notation. We call HS5cum the calculus defined by the cumulative
formulation of the rules of HS5
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Soundness of the cumulative calculus

Theorem (Soundness). If ⊢HS5cum H , then |=U H

Proof. The cumulative rules are admissible in HS5.

Example: Admissibility of the cumulative version of □R in HS5

H | Γ⇒ ∆,□A | ⇒ A
by invertibility of □R

H | Γ⇒ ∆ | ⇒ A | ⇒ A
ctrext

H | Γ⇒ ∆ | ⇒ A
□R

H | Γ⇒ ∆,□A

Therefore: if ⊢HS5cum H , then ⊢HS5 H , hence |=U H
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Local loop-checking

Clearly, the complexity of hypersequents is not reduced by
backward applications of cumulative rules

☞ In order to ensure termination of backward proof-search, one
needs to avoid redundant rule applications

Local loop-checking condition (LLCC)
An application of a hypersequent rule with premiss G, or premisses
G1 and G2, and conclusion H satisfies the local loop checking
condition if for each premiss Gi , there exists a component Γ⇒ ∆
in Gi such that for no component Σ⇒ Π of the conclusion H we
have set(Γ) ⊆ set(Σ) and set(∆) ⊆ set(Π)

Example: the following rule applications violate the LLCC

⇒ p ∧ q, q, p ⇒ p ∧ q, q, q
∧R

⇒ p ∧ q, q
p ⇒ q | r ⇒ □q | ⇒ q

□Rp ⇒ q | r ⇒ □q

☞ The LLCC prevents the applications of rules that do not add
additional information to the hypersequents
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Backward proof-search with LLCC

Saturated hypersequent
A hypersequent which is not initial and such that no rule is
backward applicable to it without violating the LLCC

Backward proof-search with LLCC for H
The construction of a derivation tree from the root to the leaves
such that the root is labelled with the hypersequent H , and the
branches are expanded by applying at each step a backwards
applicable rule that satisfies the LLCC. The construction
terminates when all leaves are labelled with hypersequents that
are either initial or saturated
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Completeness of backward proof-search with LLCC

The LLCC restricts the backward applicability of the rules

☞ Is proof-search with LLCC still complete?

☞ We now prove that proof-search with LLCC is complete by
showing that every hypersequent H on which it fails is not valid in
the universal semantics

☞ In particular, we show that from every failed proof for H we can
extract a countermodel of H

☞ More precisely, we show that each saturated hypersequent
occurring in a failed proof of H provides the information needed to
build such countermodel
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The procedure in a picture
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Countermodel extraction

Let H = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n be a saturated hypersequent
occurring in a failed proof for G

Countermodel extracted from a saturated hypersequent
We defineM = ⟨W , v⟩ on the basis of H as follows

▶ W = {k | Γk ⇒ ∆k ∈ H}

▶ For all p ∈ Atm, v(p) = {k ∈ W | p ∈ Γk }

Countermodel lemma
For all formulas A , for all components Γk ⇒ ∆k ,
▶ if A ∈ Γk , then k ⊩ A
▶ if A ∈ ∆k , then k ⊮ A

Proved by induction on the construction of A (exercise)
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Countermodel extraction

Let H = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n be a saturated hypersequent
occurring in a failed proof for G, andM be the model defined on
the basis of H as in the previous slide

The countermodel lemma implies that
▶ for all Γk ⇒ ∆k ∈ H , k ⊮

∧
Γk →

∨
∆k

▶ hence,M ̸|= H

Moreover, since all rules are cumulative, we have

for all Σ⇒ Π ∈ G, there is Γk ⇒ ∆k ∈ H s.t. Σ ⊆ Γk and Π ⊆ ∆k

Therefore
▶ for all Σ⇒ Π ∈ G, there is k ∈ W s.t. k ⊮

∧
Σ→

∨
Π

▶ hence,M ̸|= G

☞ M is a countermodel of the root hypersequent G
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Example of failed proof

✓

✓

w1 w2 w3

p, p ∨ q, . . .⇒ . . . | q, . . .⇒ p | p, . . .⇒ q X
∨Lp ∨ q, . . .⇒ . . . | q, p ∨ q ⇒ p | p, p ∨ q ⇒ q
∨L

p ∨ q,□(p ∨ q)⇒ . . . | q, p ∨ q ⇒ p | p ∨ q ⇒ q
∨L

p ∨ q,□(p ∨ q)⇒ □p ∨ □q,□p,□q | p ∨ q ⇒ p | p ∨ q ⇒ q
□L

p ∨ q,□(p ∨ q)⇒ □p ∨ □q,□p,□q | p ∨ q ⇒ p | ⇒ q
□L

p ∨ q,□(p ∨ q)⇒ □p ∨ □q,□p,□q | ⇒ p | ⇒ q
□t

L□(p ∨ q)⇒ □p ∨ □q,□p,□q | ⇒ p | ⇒ q
□R

□(p ∨ q)⇒ □p ∨ □q,□p,□q | ⇒ p
□R

□(p ∨ q)⇒ □p ∨ □q,□p,□q
∨R

□(p ∨ q)⇒ □p ∨ □q

w1,w2,w3 ⊩ □(p ∨ q)
w1,w2,w3 ⊮ □p ∨ □q
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Optimal proof-search procedure

Theorem. Backward proof-search with LLCC in HS5 provides a NP
decision procedure for non derivability in S5

☞ At each step, non deterministically chose an applicable rule
satisfying the LLCC and a correct premiss

This result relies on two key remarks:

1. The length of branches in a proof built by backward
proof-search with LLCC is polynomially bounded by the length
of the root hypersequent (see next slide)

2. Verifying the LLCC takes polynomial time
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Optimal proof-search procedure

Lemma. The length of branches in a proof for a hypersequent H
built by backward proof-search with LLCC is polynomially bounded
by the length n of H
Sketch of proof.

The length of a branch depends on the number of rule
applications in that branch. Each backward rule application of a
cumulative rule introduces a new formula. Hence, the number of possible
rule applications is bounded by the maximal length of a hypersequent that
can occur in a proof for H . In turn, the length of a hypersequent depends
on the number of components and the length of each component.

Number of components: New components are introduced only by the rule
□R. Moreover, the creation of new identical components is prevented by
the LLCC. Hence, the number of components is bounded by the number
of □-subformulas of H .

Length of each component: Because of analyticity, each component can
only contain subformulas ofH . Moreover, repetitions of same formulas in
the same component is prevented by the LLCC. Hence, the length of
each component is bounded by the number of subformulas of H .

Therefore, the length of hypersequents in the proof, hence the length of
branches, is in O(n2) qed
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Mono- vs. Multi-modal logics
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Mono- vs. multi-modal logics

How many modalities can sequent calculi support?

Sequent and labelled sequent calculi can be extended to
multimodal logics without essential modifications.

Example. Let Kn be the logic with n K-modalities □1, . . . ,□n. The
calculus G3Kn can be defined considering, for each i ≤ n, the rule

Γ⇒ Aki Γ′,□iΓ⇒ □iA ,∆

Similary, a labelled calculus for Kn can be defined considering
relational symbols R1, . . . ,Rn and, for each i ≤ n, the rules

xRiy, x : □iA , y : A , Γ⇒ ∆
□L xRiy, x : □iA , Γ⇒ ∆

xRiy, Γ⇒ ∆, y : A
□R (y!)

Γ⇒ ∆, x : □iA

☞ The properties of the sequent and the labelled calculus for K
hold also for the sequent and the labelled calculus for Kn
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Mono- vs. multi-modal logics

The same is not possible in HS5
▶ The hypersequent construct | can represent only one S5

modality
▶ After all, a model can have only one universal modality

However, the universal modality can be combined with other kinds
of modalities
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Example

Example.
Let KU be the logic with a K modality □ and a universal modality ■

Semantics M = ⟨W ,R , v⟩, with
▶ M,w ⊩ □A iff for all u s.t. wRu,M, u ⊩ A
▶ M,w ⊩ ■A iff for all u,M, u ⊩ A

(redundant but complete) (cf. [Goranko, Passy, 1992] for
Axiomatisation a more detailed analysis)
▶ K axiomatisation for □
▶ S5 axiomatisation for ■
▶ ■A → □A

Hypersequent calculus S5 hypersequent calculus for ■,
extended with the hypersequent formulation of the rule k for □:

H | Σ⇒ A
k
H | Γ,□Σ⇒ □A ,∆

Exercise. Derive the axiom ■A → □A
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(Digression) Back to sequent calculus

As we have seen, a sequent Γ⇒ ∆ represents a consequence
relation between the antecedent Γ (the assumptions) and the
consequent ∆

But... which kind of assumptions?

Global vs. local modal consequence relation

Syntactically Γ ⊢ A (Hilbert systems)
▶ Global Both propositional and modal rules (necessitation)

can be applied to the assumptions
▶ Local Only propositional rules be applied to the assumptions

Semantically Γ |= A
▶ Global For allM, M |=

∧
Γ impliesM |= A

▶ Local For allM, for all w, M,w ⊩
∧

Γ impliesM,w ⊩ A
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(Digression) Back to sequent calculus

Remark.
▶ The sequent rule

A , Γ⇒ ∆,B
→R

Γ⇒ ∆,A → B

expresses the deduction theorem, that holds (in this form) for
local consequence only

A |=local B { |=local A → B
A |=global B ̸{ |=global A → B

e.g. A |=global □A but ̸|=global A → □A

▶ Indeed, validity of modal sequents is defined exactly as the
local consequence

☞ Modal sequents represent local consequence relations
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Hypersequent calculus and global assumptions

The hypersequent calculus can be used to reasoning under global
assumptions

Indeed, reasoning under global assumptions in K:

B1, ...,Bn ⊢global A

can be reduced to

⊢KU ■B1 ∧ ... ∧ ■Bn → A

which is expressed in HKU with the sequent

■B1, . . . ,■Bn ⇒ A

☞ We now show that HKU provides a decision procedure for
reasoning under global assumptions in K
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Decision procedure in HKU

Decision procedure analogous to HS5:

▶ Cumulative formulation of all rules of the calculus

example: H | Γ,□Σ⇒ □A ,∆ | Σ⇒ A
k

H | Γ,□Σ⇒ □A ,∆

▶ Loop checking and proof-search strategy defined as for HS5
▶ Termination of proof search: by measuring the size of maximal

hypersequents in proof-search. Remark: exponential size!
▶ Completeness of proof-search: countermodel from every

saturated hypersequent (next slide)
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Countermodel extraction

Let H = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n be a saturated hypersequent
occurring in a failed proof for G in HKU

Countermodel extracted from a saturated hypersequent
We defineM = ⟨W ,R , v⟩ on the basis of H as follows
▶ W = {k | Γk ⇒ ∆k ∈ H}

▶ For all k , ℓ ∈ W , kRℓ iff □A ∈ Γk or ■A ∈ Γk , then A ∈ Γℓ
▶ For all p ∈ Atm, v(p) = {k ∈ W | p ∈ Γk }

Countermodel lemma
For all formulas A , for all components Γk ⇒ ∆k ,
▶ if A ∈ Γk , then k ⊩ A
▶ if A ∈ ∆k , then k ⊮ A

Proved by induction on the construction of A (exercise)
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Example

Exercise. Prove that □q is derivable under assumptions p and
p → q if and only if both assumptions are global

Possible solution
▶ □q is derivable under global assumptions p and p → q

✓
. . . | p, p → q ⇒ q, p

✓
. . . | q, p, p → q ⇒ q

→L
■p,■(p → q)⇒ □q | p, p → q ⇒ q

■L
■p,■(p → q)⇒ □q | p ⇒ q

■L
■p,■(p → q)⇒ □q | ⇒ q

□R
■p,■(p → q)⇒ □q
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Example

Possible solution
▶ □q is not derivable under global assumption p and local

assumption p → q

✓
p,■p, p → q, p ⇒ □q | p ⇒ q

X

q, p,■p, p → q ⇒ □q | p ⇒ q
→Rp,■p, p → q ⇒ □q | p ⇒ q

■t
L■p, p → q ⇒ □q | p ⇒ q

■L
■p, p → q ⇒ □q | ⇒ q

□R■p, p → q ⇒ □q

1 2
q, p,■p, p → q ⇒ □q | p ⇒ q

W = {1, 2} 1R1, 1R2 v(p) = {1, 2}, v(q) = {1}

☞ 1 ⊩ ■p, 1 ⊩ p → q, 1 ⊮ □q
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Other hypersequent calculi for S5

Several alternative hypersequent calculi for S5: [Mints, 1971],
[Pottinger, 1983], [Avron, 1993], [Restall, 2007], [Poggiolesi, 2008],
[Kurokawa, 2013], [Lahav, 2013]

A nice and influential calculus: [Avron, 1993]

H | A , Γ⇒ ∆
T
H | □A , Γ⇒ ∆

H | □Γ⇒ A
4
H | □Γ⇒ □A

H | □Γ,Σ⇒ □∆,Π
MS

H | □Γ⇒ □∆ | Σ⇒ Π

▶ “Modular” extension of a sequent calculus for S4
▶ S5 obtained with the addition of a hypersequential structural

rule: the Modal Splitting (MS)
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Appendix:
Labelled vs. structured calculi.

Two separate worlds?
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Labelled vs. structured calculi. Two separate worlds?

Labelled calculus (informal definition)
Any calculus which includes linguistic components that do not
belong to the language of the logic

A simple labelled calculus: LabS5
▶ Labels x, y, z, . . .
▶ Labelled formulas x : A
▶ No relational atoms

▶ Rules of G3cp enriched with labels Γ⇒ ∆, x : A , x : B
∨R

Γ⇒ ∆, x : A ∨ B
▶ Modal rules

y : A , x : □A , Γ⇒ ∆
□L (y ∈ Γ,∆)

x : □A , Γ⇒ ∆

Γ⇒ ∆, y : A
□R (y!)

Γ⇒ ∆, x : □A
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Labelled vs. structured calculi. Two separate worlds?

Remark. LabS5 notational variant of predicate calculus

y : A , x : □A , Γ⇒ ∆
□L (y ∈ Γ,∆)

x : □A , Γ⇒ ∆

Γ⇒ ∆, y : A
□R (y!)

Γ⇒ ∆, x : □A

{ {

A(y/x),∀xA , Γ⇒ ∆
∀L (y ∈ Γ,∆)

∀xA , Γ⇒ ∆

Γ⇒ ∆,A(y/x)
∀R (y!)

Γ⇒ ∆,∀xA

☞ S5 corresponds to the “uniform monadic first-order predicate
calculus” [Prior, Fine, 1977]
▶ Relational symbols with only one argument
▶ Formulas with at most one free variable

*Prior, Fine, Worlds, Times and Selves, Univ. Mass. Press, 1977.
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▶ Mutual translations between semantically equivalent hyper-
and labelled sequents

Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

↕

x1 : Γ1, . . . , xn : Γn ⇒ x1 : ∆1, . . . , xn : ∆n

▶ Direct correspondence between hypersequent and labelled
sequent rule applications

hyp(□L, □t
L) hyp(□R)

(x , y) ↕ (x = y) ↕

lab(□L) lab(□R)

▶ Direct correspondence between hypersequent and labelled
sequent derivations
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