# Proof Theory of Modal Logic Lecture 2: Labelled Proof Systems

Tiziano Dalmonte, Marianna Girlando

Free University of Bozen-Bolzano, University of Amsterdam

ESSLLI 2024 Leuven, 5-9 August 2024

#### Partial references:

- ▶ [Kanger, 1957] Spotted formulas for S5
- ▶ [Fitting, 1983], [Goré 1998] Tableaux + labels
- ▶ [Simpson, 1994], [Viganò, 1998] Natural deduction + labels
- ▶ [Mints, 1997], [Viganò, 2000], [Negri,2005] Sequent calculus + labels

#### We follow the approach of Negri:

- ▶ Proof analysis in modal logics [Negri, 2005]
- ▶ Contraction-free sequent calculi for geometric theories with an application to Barr's theorem [Negri, 2003]

### The plan

- Labelled sequent calculus for K
- ▶ Frame conditions: a general recipe

# Labelled sequent calculus for K



$$A, B ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \rightarrow B \mid \Box A \mid \Diamond A$$

Take countably many variables x, y, z, ... (the lables)

#### Labelled formulas

xRy meaning 'x has access to y'

(relational atoms)

x:A meaning 'x satisfies A'

#### Labelled sequent

$$\mathcal{R}, \Gamma \Rightarrow \Delta$$

#### where

- R is a multiset of relational atoms;
- $ightharpoonup \Gamma$ ,  $\Delta$  are multisets of labelled formulas *without* relational atoms.

Labelled sequents lack a formula interpretation

$$\begin{array}{c}
\operatorname{init} \overline{\mathcal{R}, x:\rho, \Gamma \Rightarrow \Delta, x:\rho} \\
& \stackrel{\mathcal{R}, x:A, x:B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x:A \land B, \Gamma \Rightarrow \Delta} \\
& \stackrel{\mathcal{R}, x:A, \Gamma \Rightarrow \Delta}{\mathcal{R}, x:A \land B, \Gamma \Rightarrow \Delta}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, x:A, \Gamma \Rightarrow \Delta}{\mathcal{R}, x:A \land B, \Gamma \Rightarrow \Delta} \\
& \stackrel{\mathcal{R}, x:A, \Gamma \Rightarrow \Delta}{\mathcal{R}, x:A \land B, \Gamma \Rightarrow \Delta}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B} \\
& \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B} \\
& \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B} \\
& \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}
\end{array}$$

$$\begin{array}{c}
\stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \land B}$$

$$\begin{array}{c}
\stackrel{\mathcal$$

y fresh means y does not occur in  $\mathcal{R} \cup \Gamma \cup \Delta$  y  $\neq \alpha$ 

$$\begin{array}{c} \operatorname{init} \overline{\mathcal{R}, x : p, \Gamma \Rightarrow \Delta, x : p} \\ \\ \mathcal{R}, x : A, x : B, \Gamma \Rightarrow \Delta \\ \\ \mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta \\ \\ \vee_{\mathsf{L}} \\ \hline \\ \mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta \\ \\ & \mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta \\ \\ & \mathcal{R}, x : A \lor B, \Gamma \Rightarrow \Delta \\ \\ & \mathcal{R}, x : A \lor B, \Gamma \Rightarrow \Delta \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ & \mathcal{R}, \Gamma \Rightarrow \Delta$$

*y* fresh means *y* does not occur in  $\mathcal{R} \cup \Gamma \cup \Delta$ 

We write  $\vdash_{labK} \mathcal{R}, \Gamma \Rightarrow \Delta$  if there is a derivation of  $\mathcal{R}, \Gamma \Rightarrow \Delta$  in labK.

Example: 
$$\vdash_{\mathsf{labK}} \Rightarrow x: (\lozenge p \rightarrow \Box q) \rightarrow \Box (p \rightarrow q)$$

T set of formulas, A formula HILBERT-STYLE LOGICAL AXION SYSTEM CONSEQUENCE ⊢ x: [ => x: A LABELLED S.C.

x: [= {x:G | G ∈ []

Given a sequent  $S = \mathcal{R}, \Gamma \Rightarrow \Delta$ , and a model  $\mathcal{M} = \langle W, R, v \rangle$ , let  $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$ , and  $\rho : \mathsf{Lb}(S) \to W$  (interpretation).

Satisfiability of labelled formulas at  $\mathcal M$  under  $\rho$ :

$$\mathcal{M}, \rho \Vdash xRy$$
 iff  $\mathcal{M} \not\models \rho(x)R\rho(y)$   
 $\mathcal{M}, \rho \Vdash x:A$  iff  $\mathcal{M}, \rho(x) \Vdash A$ 

Satisfiability of sequents at M under  $\rho$  ( $\varphi$  is xRy or x:A):

$$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$
 iff

if for all  $\varphi \in \mathcal{R} \cup \Gamma$  it holds that  $\mathcal{M}, \rho \Vdash \varphi$ , then for some  $x:D \in \Delta$  it holds that  $\mathcal{M}, \rho \Vdash x:D$ .

A sequent  $\mathcal{R}, \Gamma \Rightarrow \Delta$  has a countermodel iff there are  $\mathcal{M}, \rho$  such that:

- ▶  $\mathcal{M}, \rho \models \varphi$ , for all  $\varphi \in \mathcal{R} \cup \Gamma$ , and
- ▶  $\mathcal{M}, \rho \not\models x:D$ , for all  $x:D \in \Delta$ .

Validity of sequents in a class of frames X:

$$\models_{\mathcal{X}} \mathcal{R}, \Gamma \Rightarrow \Delta$$
 iff for any  $\rho$  and any  $\mathcal{M} \in \mathcal{X}, \ \mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$ 

## Soundness of labK [Negri, 2009]

## Theorem (Soundness). If $\vdash_{labK} \mathcal{R}, \Gamma \Rightarrow \Delta$ then $\models \mathcal{R}, \Gamma \Rightarrow \Delta$

Proof. By incluction on the height of the derivation of  $R, \Gamma = > \Delta$ .

We need to show that initial sequents are valid (easy) and that inference rules preserve validity.

cone of  $\square_R$ :

To prove: If  $R, \Gamma = \Delta$ ,  $x: \square A$  is not valid, then  $xRy, R, \Gamma = \Delta$ , y: A is not valid.

Assume  $\mathcal{H}, \rho \not\models \mathcal{R}, \Gamma \Rightarrow \Delta, \pi: \Box A, \text{ for some } \mathcal{H} = \langle w, \mathcal{R}, \upsilon \rangle \text{ and } \rho.$ 

Take  $\rho'(y) = w$ , and  $\rho'(K) = \rho(K)$ , for all  $K \neq y$  in  $Ru \vdash U\Delta$ . It is easy to verify that



Substitution on labelled formulas:

$$xRy[z/y] := xRz$$
  
 $y:A[z/y] := z:A$ 

Substitution on multisets of labelled formulas  $\Gamma[z/y]$ 

Lemma (Substitution). Rule subst is hp-admissible.

$$\frac{\mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}[y/x], \Gamma[y/x] \Rightarrow \Delta[y/x]}$$
 subst

Lemma (Weakening). Rules  $wk_L$ ,  $wk_R$  are hp-admissible ( $\varphi$  is xRy or x:A).

$$\mathbf{wk_L} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta}{\varphi, \mathcal{R}, \Gamma \Rightarrow \Delta} \qquad \mathbf{wk_R} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta, \varphi}$$

## Lemma (Invertibility).

For every rule r, if the conclusion of r is derivable with a derivation of height h, then each of its premisses is derivable, with at most the same h.

Lemma (Contraction). Rules  $ctr_L$ ,  $ctr_R$  are hp-admissible ( $\varphi$  is xRy or x:A).

$$\operatorname{ctr_L} \frac{\varphi, \varphi, \mathcal{R}, \Gamma \Rightarrow \Delta}{\varphi, \mathcal{R}, \Gamma \Rightarrow \Delta} \qquad \operatorname{ctr_R} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, \varphi, \varphi}{\mathcal{R}, \Gamma \Rightarrow \Delta, \varphi}$$

Lemma (Cut). The cut rule is admissible.

$$\operatorname{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, \textbf{\textit{x}} : A \quad \textbf{\textit{x}} : A, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

Proof. By induction on  $(c(A), h_1 + h_2)$ .

$$\frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y : A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A} \xrightarrow{\Box_L} \frac{xRz, \mathcal{R}', x : \Box A, z : A, \Gamma' \Rightarrow \Delta'}{xRz, \mathcal{R}', x : \Box A, \Gamma' \Rightarrow \Delta'}$$
 
$$\frac{\mathcal{R}, xRz, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}{\mathcal{R}, xRz, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

$$\operatorname{cut} \frac{xRz, \mathcal{R}, \Gamma \Rightarrow \Delta, z:A}{\operatorname{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x: \Box A \quad xRz, \mathcal{R}', x: \Box A, z:A, \Gamma' \Rightarrow \Delta'}{xRz, \mathcal{R}, \mathcal{R}', z:A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}}{\operatorname{ctr_{L}, ctr_{R}} \frac{\mathcal{R}, \mathcal{R}, xRz, xRz, \mathcal{R}', \Gamma, \Gamma, \Gamma' \Rightarrow \Delta, \Delta, \Delta'}{\mathcal{R}, xRz, \mathcal{R}', \Gamma, \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}}$$

For  $\Gamma$  set of formulas and  $x:\Gamma=\{x:G\mid \text{ for each }G\in\Gamma\}$ :

Theorem (Syntactic Completeness). If  $\Gamma \vdash_{\mathsf{K}} A$  then  $\vdash_{\mathsf{labK}} x:\Gamma \Rightarrow x:A$ .



## Frame conditions: a general recipe



Let  $K = CPL \cup \{k, nec\}$ . Logic K is characterised by the class of all Kripke frames.

| Name | Axiom                            | Frame condition |                                                                   |
|------|----------------------------------|-----------------|-------------------------------------------------------------------|
| d    | $\Box A \rightarrow \Diamond A$  | Seriality       | $\forall x \exists y (xRy)$                                       |
| t    | $\Box A \rightarrow A$           | Reflexivity     | ∀x(xRx)                                                           |
| b    | $A \rightarrow \Box \Diamond A$  | Symmetry        | $\forall x \forall y (xRy \rightarrow yRx)$                       |
| 4    | $\Box A \rightarrow \Box \Box A$ | Transitivity    | $\forall x \forall y \forall z ((xRy \land yRz) \rightarrow xRz)$ |
| 5    | $\Diamond A \to \Box \Diamond A$ | Euclideaness    | $\forall x \forall y \forall z ((xRy \land xRz) \rightarrow yRz)$ |

Take  $X \subseteq \{d, t, b, 4, 5\}$ .

We write  $\Gamma \vdash_{K \cup X} A$  iff A is derivable from  $\Gamma$  in the axiom system  $K \cup X$ .

We denote by  $\mathcal X$  the class of frames satisfying properties in X. We write  $\Gamma \models_{\mathcal X} A$  iff A is logical consequence of  $\Gamma$  in the class of frames  $\mathcal X$ .

Theorem. For  $X \subseteq \{d, t, b, 4, 5\}$ ,  $\Gamma \vdash_{K \cup X} A$  iff  $\Gamma \models_{\mathcal{X}} A$ .

| Name | Axiom                            | Frame condition |                                                                   |
|------|----------------------------------|-----------------|-------------------------------------------------------------------|
| d    | $\Box A \rightarrow \Diamond A$  | Seriality       | $\forall x \exists y (xRy)$                                       |
| t    | $\Box A \rightarrow A$           | Reflexivity     | $\forall x(xRx)$                                                  |
| b    | $A \rightarrow \Box \Diamond A$  | Symmetry        | $\forall x \forall y (xRy \rightarrow yRx)$                       |
| 4    | $\Box A \rightarrow \Box \Box A$ | Transitivity    | $\forall x \forall y \forall z ((xRy \land yRz) \rightarrow xRz)$ |
| 5    | $\Diamond A \to \Box \Diamond A$ | Euclideaness    | $\forall x \forall y \forall z ((xRy \land xRz) \rightarrow yRz)$ |

Frame conditions can be characterised by first-order logic formulas, in the language consisting of a single predicate symbol, R(x, y).

Proof systems for geometric theories, [Negri, 2003]:

"axioms-as-rules"

How to transform axioms of geometric theories (geometric implications) into rules, preserving the structural properties of the calculus.

The first-order logic formulas corresponding to the frame conditions above (and many more!) are geometric implications

#### First-order languages

A first-order signature is a tuple  $\sigma = \langle c, d, \dots, f, g, \dots p, q, \dots \rangle$ 

- ▶ Constant symbols c, d, . . .
- ▶ Function symbols f, g, ..., each with arity > 0
- ▶ Predicate symbols p, q, ..., each with arity  $\geq 0$

A first-order language over a signature  $\sigma$ , denoted  $\mathcal{L}(\sigma)$ , consists of:

- The terms generated from a countably many variables x, y,... using the constants and function symbols of σ;
- ▶ The formulas generated from the terms of  $\mathcal{L}(\sigma)$  and predicate symbols of  $\sigma$  using the operators  $\bot, \land, \lor, \rightarrow, \lor, \exists$ .

A first-order language with equality over a signature  $\sigma$ , denoted  $\mathcal{L}^{=}(\sigma)$ , additionally comprises a binary predicate for equality.

### Example.

 $\mathcal{L}^{=}(0,suc^1,+^2,\times^2)$  is the language of arithmetic  $\mathcal{L}(R^2)$  is the language we use to express frame conditions

Fix a first-order language  $\mathcal{L}(\sigma)$  (with or without equality).

A first-order theory over  $\mathcal{L}(\sigma)$  is a set of closed formulas of  $\mathcal{L}(\sigma)$ .

Example. Peano Arithmetic and Robinson Arithmetic are first-order theories over  $\mathcal{L}^{=}(0, suc, +, \times)$ .

A geometric formula is a formula of  $\mathcal{L}(\sigma)$  which does not contain  $\rightarrow$  or  $\forall$ .

A geometric implication is closed formula of  $\mathcal{L}(\sigma)$  of the shape:

 $\forall \vec{x}(A \rightarrow B)$ , for A, B geometric formulas

A geometric theory over  $\mathcal{L}(\sigma)$  is a first-order theory over  $\mathcal{L}(\sigma)$  whose formulas are geometric implications.

Example. Robinson arithmetic is a geometric theory over the language  $\mathcal{L}^{=}(0, suc, +, \times)$ .

Geometric implications can be expressed as conjunctions of geometric axioms, i.e., closed formulas of  $\mathcal{L}(\sigma)$  having the form:

$$\forall \vec{x} \left( P \to \left( \exists \vec{y}_1(Q_1) \lor \dots \lor \exists \vec{y}_m(Q_m) \right) \right)$$

- $\vec{x}$ ,  $\vec{y}_1, \dots, \vec{y}_m$  are (possibly empty) vectors of variables; disjoint
- ▶  $m \ge 0$ ;
- ▶ P,  $Q_1$ ,...,  $Q_m$  are (possibly empty) conjunctions of atomic formulas of  $\mathcal{L}(\sigma)$ ;
- $\vec{y}_1, \dots, \vec{y}_m$  do not occur in  $\vec{P}$ .

Geometric implications can be expressed as conjunctions of geometric axioms, i.e., closed formulas of  $\mathcal{L}(\sigma)$  having the form:

$$\forall \vec{x} \left( \stackrel{\textbf{P}}{\longrightarrow} \left( \exists \vec{y}_1(Q_1) \lor \cdots \lor \exists \vec{y}_m(Q_m) \right) \right)$$

- $\vec{x}$ ,  $\vec{y}_1, \dots, \vec{y}_m$  are (possibly empty) vectors of variables;
- ▶  $m \ge 0$ ;
- ▶ P,  $Q_1$ ,...,  $Q_m$  are (possibly empty) conjunctions of atomic formulas of  $\mathcal{L}(\sigma)$ ;
- $\vec{y}_1, \ldots, \vec{y}_m$  do not occur in  $\vec{P}$ .

Geometric axioms can be turned into sequent calculus rules:

$$\overbrace{\Xi_{1}[\vec{z}_{1}/\vec{y}_{1}], \Pi, \Gamma \Rightarrow \Delta}_{\text{GA}} \cdots \underbrace{\Xi_{m}[\vec{z}_{m}/\vec{y}_{m}], \Pi, \Gamma \Rightarrow \Delta}_{\Pi, \Gamma \Rightarrow \Delta}$$

- $ightharpoonup \Pi$  is the multiset of atomic formulas in P;
- $\triangleright \equiv_i$  is the multiset of atomic formulas in  $Q_i$ , for each  $i \leq m$ ;
- $\triangleright \vec{z}_1, \dots, \vec{z}_m$  do not occur in  $\Gamma \cup \Delta$ .

Geometric implications can be expressed as conjunctions of geometric axioms, i.e., closed formulas of  $\mathcal{L}(\sigma)$  having the form:

$$\forall \vec{x} \Big( P \to \Big( \exists \vec{y}_1(Q_1) \lor \cdots \lor \exists \vec{y}_m(Q_m) \Big) \Big)$$

- $\vec{x}$ ,  $\vec{y}_1, \dots, \vec{y}_m$  are (possibly empty) vectors of variables;
- ▶  $m \ge 0$ ;
- ▶ P,  $Q_1$ ,...,  $Q_m$  are (possibly empty) conjunctions of atomic formulas of  $\mathcal{L}(\sigma)$ ;
- $\vec{y}_1, \dots, \vec{y}_m$  do not occur in  $\vec{P}$ .

Geometric axioms can be turned into sequent calculus rules:

n Ry

- ▶ П is the multiset of atomic formulas in P;
- ▶  $\Xi_i$  is the multiset of atomic formulas in  $Q_i$ , for each  $i \leq m$ ;
- $ightharpoonup \vec{z}_1, \ldots, \vec{z}_m$  do not occur in  $\Gamma \cup \Delta$ .

$$\forall \vec{x} \left( P \to \left( \exists \vec{y}_{1}(Q_{1}) \vee \cdots \vee \exists \vec{y}_{m}(Q_{m}) \right) \right)$$

$$GA = \frac{\Xi_{1}[\vec{z}_{1}/\vec{y}_{1}], \Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}{\Pi, \mathcal{R}, \Gamma \Rightarrow \Delta} \qquad \vdots \qquad \Xi_{m}[\vec{z}_{m}/\vec{y}_{m}], \Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}{\Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

$$P = Q$$

$$Q$$

$$ARy \wedge y R \neq A \Rightarrow \alpha R \neq A$$

$$ARy, y R \neq A, R_{1} \Gamma \Rightarrow \Delta$$

$$\alpha Ry, y R \neq A, R_{1} \Gamma \Rightarrow \Delta$$

$$\alpha Ry, y R \neq A, R_{1} \Gamma \Rightarrow \Delta$$

$$\begin{split} & \operatorname{ser} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \, _{y \, \, \text{fresh}} \quad \operatorname{ref} \frac{xRx, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{sym} \frac{yRx, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta} \\ & \operatorname{tr} \frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{euc} \frac{yRz, xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \end{split}$$

$$\begin{split} \operatorname{ser} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \,_{y \, \operatorname{fresh}} \quad & \operatorname{ref} \frac{xRx, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{sym} \frac{yRx, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta} \\ & \operatorname{tr} \frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \quad & \operatorname{euc} \frac{yRz, xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \end{split}$$

For  $X \subseteq \{d, t, b, 4, 5\}$ , lab $K \cup X$  is defined by adding to labK the rules for frame conditions corresponding to elements of X, plus the rules obtained by to satisfy the closure condition (contracted instances of the rules):

$$\operatorname{euc} \frac{yRy, xRy, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta} \quad \rightsquigarrow \quad \operatorname{euc'} \frac{yRy, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

Example: labK  $\cup$  {5} denotes the proof system labK  $\cup$  {euc, euc'}.

We denote by  $\vdash_{labK \cup X} S$  derivability of labelled sequent S in labK  $\cup X$ .

For  $X \subseteq \{d, t, b, 4, 5\}$ :

Theorem (Soundness). If  $\vdash_{\mathsf{labK} \cup \mathsf{X}} \mathcal{R}, \Gamma \Rightarrow \Delta$  then  $\models_{\mathcal{X}} \mathcal{R}, \Gamma \Rightarrow \Delta$ .

Example. If the premiss of rule ser is valid in all serial models, then its conclusion is valid in all serial models.

$$\operatorname{ser} \frac{\textit{xRy}, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \textit{y fresh}$$

Lemma (Cut). The cut rule is admissible in labK  $\cup$  X:

$$\operatorname{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \quad x : A, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

For  $\Gamma$  set of formulas and  $x:\Gamma = \{x:G \mid \text{ for each } G \in \Gamma\}$ :

Theorem (Syntactic Completeness). If  $\Gamma \vdash_{\mathsf{K} \cup \mathsf{X}} A$  then  $\vdash_{\mathsf{lab}\mathsf{K} \cup \mathsf{X}} x : \Gamma \Rightarrow x : A$ .



$$GA_{0} = \forall \vec{x} \left( P \to \left( \exists \vec{y}_{1}(Q_{1}) \lor \cdots \lor \exists \vec{y}_{m}(Q_{m}) \right) \right)$$

$$GA_{1} = \forall \vec{x} \left( P \to \left( \exists \vec{y}_{1}(\bigwedge GA_{0}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{0}) \right) \right)$$

$$GA_{n+1} = \forall \vec{x} \left( P \to \left( \exists \vec{y}_{1}(\bigwedge GA_{k_{1}}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{k_{m}}) \right) \right)$$
for  $k_{1}, \ldots, k_{m} \ge n$ 

$$\begin{split} GA_0 &= \forall \vec{x} \Big( \stackrel{P}{\rightarrow} \Big( \exists \vec{y}_1(Q_1) \lor \cdots \lor \exists \vec{y}_m(Q_m) \Big) \Big) \\ GA_1 &= \forall \vec{x} \Big( \stackrel{P}{\rightarrow} \Big( \exists \vec{y}_1(\bigwedge GA_0) \lor \cdots \lor \exists \vec{y}_m(\bigwedge GA_0) \Big) \Big) \\ GA_{n+1} &= \forall \vec{x} \Big( \stackrel{P}{\rightarrow} \Big( \exists \vec{y}_1(\bigwedge GA_{k_1}) \lor \cdots \lor \exists \vec{y}_m(\bigwedge GA_{k_m}) \Big) \Big) \end{split}$$

for 
$$k_1, \ldots, k_m \geq n$$

Systems of rules cover all systems of normal modal logics axiomatised by Sahlqvist formulas.

$$\begin{split} GA_0 &= \forall \vec{x} \Big( \stackrel{P}{\rightarrow} \Big( \exists \vec{y}_1(Q_1) \lor \cdots \lor \exists \vec{y}_m(Q_m) \Big) \Big) \\ GA_1 &= \forall \vec{x} \Big( \stackrel{P}{\rightarrow} \Big( \exists \vec{y}_1(\bigwedge GA_0) \lor \cdots \lor \exists \vec{y}_m(\bigwedge GA_0) \Big) \Big) \\ GA_{n+1} &= \forall \vec{x} \Big( \stackrel{P}{\rightarrow} \Big( \exists \vec{y}_1(\bigwedge GA_{k_1}) \lor \cdots \lor \exists \vec{y}_m(\bigwedge GA_{k_m}) \Big) \Big) \end{split}$$

for 
$$k_1, \ldots, k_m \geq n$$

Systems of rules cover all systems of normal modal logics axiomatised by Sahlqvist formulas.

Gödel-Löb provability logic (GL):

Transitivity: *R* is transitive Converse well-foundedness: there are no infinite *R*-chains

$$\begin{split} GA_0 &= \forall \vec{x} \Big( \stackrel{P}{\rightarrow} \Big( \exists \vec{y}_1(Q_1) \lor \cdots \lor \exists \vec{y}_m(Q_m) \Big) \Big) \\ GA_1 &= \forall \vec{x} \Big( \stackrel{P}{\rightarrow} \Big( \exists \vec{y}_1(\bigwedge GA_0) \lor \cdots \lor \exists \vec{y}_m(\bigwedge GA_0) \Big) \Big) \\ GA_{n+1} &= \forall \vec{x} \Big( \stackrel{P}{\rightarrow} \Big( \exists \vec{y}_1(\bigwedge GA_{k_1}) \lor \cdots \lor \exists \vec{y}_m(\bigwedge GA_{k_m}) \Big) \Big) \end{split}$$

for 
$$k_1, \ldots, k_m \geq n$$

Systems of rules cover all systems of normal modal logics axiomatised by Sahlqvist formulas.

Gödel-Löb provability logic (GL):

Transitivity: R is transitive

Converse well-foundedness: there are no infinite R-chains

[Negri, 2005]: labelled proof system for GL!

#### labK ∪ X: main results



- ▶ Derive axiom 4, that is,  $\Box A \rightarrow \Box \Box A$ , in labK  $\cup \{t, 5\}$ . Then, show that rule tr is derivable in labK  $\cup \{t, 5\} \cup \{wk_L, wk_R\}$ .
- ▶ Derive axiom 5, that is,  $\diamondsuit A \to \Box \diamondsuit A$ , in labK  $\cup \{b, 4\}$ . Then, show that rule euc is derivable in labK  $\cup \{b, 4\} \cup \{wk_L, wk_R\}$ .
- Write down the labelled rule corresponding to the frame condition of confluence:

$$\forall x, y, z ((R(x, y) \land R(x, z)) \rightarrow \exists k (R(y, k) \land R(z, k)))$$

Write down the sequent calculus rules corresponding to the axioms of Robinson Arithmetic. Can we use the results from [Negri, 2003] to prove consistency of Robinson Arithmetic? If yes, how?