Proof Theory of Modal Logic Lecture 3, part 1: Labelled Proof Systems

Tiziano Dalmonte, Marianna Girlando

Free University of Bozen-Bolzano, University of Amsterdam

ESSLLI 2024 Leuven, 5-9 August 2024

The plan

- Labelled sequent calculus for K
- ▶ Frame conditions: a general recipe
- Semantic completeness

- D Frame conditions as geometric axioms (Fo-furnulas in $\mathcal{L}(R)$)
- D "Axioms-as-rubs" method [Negri, 2003]

 Geometric axioms can be turned into request calculus rules

 (general result to define cut-free request calculi

 for geometric theories)
- D We can define cut-free labelled sequent calculi for modal logics whose frame conditions can be exprened as geometric axioms [Megri, 2005].

Geometric implications can be expressed as conjunctions of geometric axioms, i.e., closed formulas of $\mathcal{L}(\sigma)$ having the form:

$$\forall \vec{x} \left(P \rightarrow \left(\exists \vec{y}_1(Q_1) \lor \dots \lor \exists \vec{y}_m(Q_m) \right) \right)$$
 مانه منسلا \vec{x} , $\vec{y}_1, \dots, \vec{y}_m$ are (possibly empty) vectors of variables;

- m > 0:
- \triangleright P, Q₁,..., Q_m are (possibly empty) conjunctions of atomic formulas of $\mathcal{L}(\sigma)$;
- $\vec{v}_1, \ldots, \vec{v}_m$ do not occur in \vec{P} .

Geometric axioms can be turned into sequent calculus rules:

$$\mathsf{GA} \frac{\Xi_1[\vec{z}_1/\vec{y}_1], \Pi, \Gamma \Rightarrow \Delta \quad \cdots \quad \Xi_m[\vec{z}_m/\vec{y}_m], \Pi, \Gamma \Rightarrow \Delta}{\Pi, \Gamma \Rightarrow \Delta}$$

- $ightharpoonup \Pi$ is the multiset of atomic formulas in P;
- $\triangleright \equiv_i$ is the multiset of atomic formulas in Q_i , for each $i \leq m$;
- $ightharpoonup \vec{z}_1, \dots, \vec{z}_m$ do not occur in $\Gamma \cup \Delta$.

Geometric implications can be expressed as conjunctions of geometric axioms, i.e., closed formulas of $\mathcal{L}(\sigma)$ having the form: Tavie &(R) as

$$\forall \vec{x} \left(\begin{matrix} P \rightarrow \left(\exists \vec{y}_1(Q_1) \lor \dots \lor \exists \vec{y}_m(Q_m) \right) \right) \\ \triangleright \vec{x}, \vec{y}_1, \dots, \vec{y}_m \text{ are (possibly empty) vectors of variables;} \end{matrix}$$

- m > 0:
- \triangleright P, Q_1, \ldots, Q_m are (possibly empty) conjunctions of atomic formulas of $\mathcal{L}(\sigma)$;
- $\vec{v}_1, \ldots, \vec{v}_m$ do not occur in \vec{P} .

Geometric axioms can be turned into sequent calculus rules:

$$\text{GA} \frac{\Xi_{1}[\vec{z}_{1}/\vec{y}_{1}], \Pi, \Gamma \Rightarrow \Delta \quad \cdots \quad \Xi_{m}[\vec{z}_{m}/\vec{y}_{m}], \Pi, \Gamma \Rightarrow \Delta}{\Pi, \Gamma \Rightarrow \Delta} \quad \begin{cases} \text{fhis becomes} \\ \alpha \\ \text{STRUETURAL} \\ \text{RULE}: \alpha \end{cases}$$

- ▶ П is the multiset of atomic formulas in P;
- $\triangleright \equiv_i$ is the multiset of atomic formulas in Q_i , for each $i \leq m$;
- $ightharpoonup \vec{z}_1, \ldots, \vec{z}_m$ do not occur in $\Gamma \cup \Delta$.

R (90, y)

$$\forall n (nRn) \land b \forall n (\phi \rightarrow nRn)$$

$$\frac{nRn, R, \Gamma \Rightarrow \Delta}{R, \Gamma \Rightarrow \Delta} \text{ ref}$$
o seriality
$$\forall n \exists y (nRy) \land b \forall n (\phi \rightarrow \exists y (nRy))$$

b eucliekan Fry 2 (x Ry x x R2 -> y R2) $\frac{y R 2, x Ry, x R 2, R, \Gamma => \Delta}{x Ry, x R 2, R, \Gamma => \Delta} \text{ euc}$

or density
$$\forall xy \left(xRy \rightarrow 32 \left(xR2 \times 2Ry \right) \right)$$

$$\underline{xR2, 2Ry, R, \Gamma \Rightarrow \Delta} \text{ den } \underline{2} \text{ fresh}$$

$$xRy,R,\Gamma \Rightarrow \Delta$$
 den \neq fresk

$$\begin{split} & \operatorname{ser} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \, y \, \operatorname{fresh} \quad \operatorname{ref} \frac{xRx, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{sym} \frac{yRx, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta} \\ & \operatorname{tr} \frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{euc} \frac{yRz, xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \end{split}$$

For $X \subseteq \{d, t, b, 4, 5\}$, labK \cup X is defined by adding to labK the rules for frame conditions corresponding to elements of X, plus the rules obtained by to satisfy the closure condition (contracted instances of the rules):

$$\underbrace{\frac{yRy, xRy, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}}_{\text{euc}} \xrightarrow{yRy, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

Example: labK \cup {5} denotes the proof system labK \cup {euc, euc'}.

We denote by $\vdash_{labK \cup X} S$ derivability of labelled sequent S in labK $\cup X$.

$$\frac{\left\{ = \left[\frac{2i}{y_i} \right], P_1, \dots, P_r, P_m, R, \Gamma \Rightarrow \Delta \right\}_{i \leq m}}{P_1, \dots, P_r, P_m, R, \Gamma \Rightarrow \Delta} \qquad \frac{\left\{ = \left[\frac{2i}{y_i} \right], P_1, \dots, P_r, \dots P_m, R, \Gamma \Rightarrow \Delta \right\}_{i \leq m}}{P_1, \dots, P_r, \dots P_m, R, \Gamma \Rightarrow \Delta}$$

For $X \subseteq \{d, t, b, 4, 5\}$:

Theorem (Soundness). If $\vdash_{labK \cup X} \mathcal{R}, \Gamma \Rightarrow \Delta$ then $\models_{\mathcal{X}} \mathcal{R}, \Gamma \Rightarrow \Delta$.

Example. If the premiss of rule ser is valid in all serial models, then its conclusion is valid in all serial models.

$$\underbrace{xRy}_{\mathcal{R},\Gamma \Rightarrow \Delta}_{\text{ser}} \underbrace{xRy}_{y \text{ fresh}}$$

Lemma (Cut). The cut rule is admissible in labK \cup X:

$$\operatorname{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x: A \quad x: A, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

For Γ set of formulas and $x:\Gamma = \{x:G \mid \text{ for each } G \in \Gamma\}$:

Theorem (Syntactic Completeness). If $\Gamma \vdash_{\mathsf{K} \cup \mathsf{X}} A$ then $\vdash_{\mathsf{lab}\mathsf{K} \cup \mathsf{X}} x : \Gamma \Rightarrow x : A$.

Systems of rules [Negri, 2016], to capture theories / logics characterized by generalized geometric implications:

$$\begin{array}{lcl} \underline{GA_0} & = & \forall \vec{x} \Big(\overset{\textbf{P}}{P} \rightarrow \Big(\exists \vec{y}_1(Q_1) \lor \cdots \lor \exists \vec{y}_m(Q_m) \Big) \Big) \\ \\ GA_1 & = & \forall \vec{x} \Big(\overset{\textbf{P}}{P} \rightarrow \Big(\exists \vec{y}_1(\bigwedge GA_0) \lor \cdots \lor \exists \vec{y}_m(\bigwedge GA_0) \Big) \Big) \\ \\ GA_{n+1} & = & \forall \vec{x} \Big(\overset{\textbf{P}}{P} \rightarrow \Big(\exists \vec{y}_1(\bigwedge GA_{k_1}) \lor \cdots \lor \exists \vec{y}_m(\bigwedge GA_{k_m}) \Big) \Big) \end{array}$$

for
$$k_1, \ldots, k_m \geq n$$

Systems of rules cover all systems of normal modal logics axiomatised by Sahlqvist formulas.

Gödel-Löb provability logic (GL):

Transitivity: R is transitive

→ Converse well-foundedness: there are no infinite *R*-chains [Negri, 2005]: labelled proof system for GL!

For $X \subseteq \{d, t, b, 4, 5\}$:

Theorem (Proof or Countermodel). For $\mathcal S$ labelled sequent, either $\vdash_{\mathsf{labK} \cup \mathsf{X}} \mathcal S$ or $\mathcal S$ has a countermodel satisfying the frame conditions in $\mathsf X$.

Proof (sketch). Define a proof search algorithm (algorithm implementing proof search in lab KUX):

the algorithm froduces a labkux proof

the algorithm produces a finite failed branch, or does not terminate

finite courtem

5 vite courter For $X \subseteq \{d, t, b, 4, 5\}$, Γ set of formulas and $x:\Gamma = \{x:G \mid \text{ for each } G \in \Gamma\}$:

Theorem (Semantic completeness). If $\Gamma \models_{\mathcal{X}} A$ then $\vdash_{\mathsf{labK} \cup \mathsf{X}} x : \Gamma \Rightarrow x : A$.

Proof. We move the contrapositive:

If Kabrux x. [= x: A, then [* A.

By the Proof or countermodel Theorem, $\kappa\colon\Gamma\Rightarrow\kappa\colon A$ has a countermodel: there are $\kappa^{\times}\in X$ and ρ^{\times} such that:

 $b \ K^{x}, \rho^{x} \models x: G, \text{ for all } x: G \in \Gamma, \text{ and } b \ K^{x}, \rho^{x} \not\models x: A.$

By definition:

$$b \ K^{\times}, p^{\times}(x) \models G$$
, for all $G \in \Gamma$, and $b \ K^{\times}, p^{\times}(x) \not\models A$.

By definition of logical consequence, TEXA.

- 0. Given a sequent S_0 , place S_0 at the root of \mathcal{T} .
- For every rule R ∈ {∧_L, ∧_R, ∨_L, ∨_R, →_L, →_R, □_L, □_R, ⋄_L, ⋄_R}, apply the following:
 - a) If every topmost sequent of T is initial, terminate.
 → S₀ is provable in labK ∪ X, and T defines a labK ∪ X proof for it.
 - b) Otherwise, write above each non-initial sequent S_i of T the sequent(s) obtained by exhaustively apply rule R to S_i.
- 2) For every rule R ∈ {ref, tr, sym, ser, euc} in labK ∪ X (if any), apply the following:
 - a) If every topmost sequent of \mathcal{T} is initial, terminate.
 - $\rightsquigarrow \ \mathcal{S}_0 \text{ is provable in labK} \cup X \text{, and } \mathcal{T} \text{ defines a labK} \cup X \text{ proof for it.}$
 - b) Otherwise, write above each non-initial sequent S_i of T the sequent(s) obtained by exhaustively apply rule R to S_i .
- 3. If there is a topmost sequent S_i of \mathcal{T} which is non-initial and to which none of the steps in 1 and 2 applied, then terminate.
 - $\sim S_0$ is not provable in labK $\cup X$, and the branch \mathscr{B} of \mathscr{T} to which S_i belongs defines a countermodel for S_0 .

 Otherwise, go to step 1.

Theorem (Proof or Countermodel). For S labelled sequent, either $\vdash_{\mathsf{labK} \cup \mathsf{X}} S$ or S has a countermodel satisfying the frame conditions in X.

Proof. Run the proof search algorithm for labK \cup X taking $S_0 = S$. Then:

- ▶ If the algorithm terminates in Step 1 or Step 2, then $\vdash_{labK\cup X} S$.
- ▶ If the algorithm terminates in Step 3: We construct a countermodel for S from the finite branch B[×] produced by the algorithm.
- ▶ If the algorithm does not terminate, then all branches of $\mathcal T$ are infinite. We construct a countermodel for $\mathcal S$ from any infinite branch $\mathcal B^\times$ of $\mathcal T$.

Let $\mathcal{B}^{\times}=(\mathcal{R}_i,\Gamma_i\Rightarrow\Delta_i)_{i< k}$ be a finite branch in \mathcal{T} produced by the algorithm $(k\in\mathbb{N})$, or an infinite branch in \mathcal{T} $(k=\omega)$. In both cases, $\mathcal{S}=\mathcal{R}_0,\Gamma_0\Rightarrow\Delta_0$.

We construct a countermodel \mathcal{M}^{\times} from \mathcal{B}^{\times} as follows:

- $W^{\times} = \{x \mid x \text{ occurs in } \mathcal{B}^{\times}\};$
- ▶ $xR^{\times}y$ iff xRy occurs in $(\mathcal{R}_i)_{i< k}$;

It is easy to verify that \mathcal{M}^{\times} satisfies the frame conditions \mathcal{X} .

Truth Lemma. Take $\rho^{\times}(x) = x$, for each label x occurring in \mathcal{B}^{\times} . Then:

- ▶ If $x:A \in (\Gamma_i)_{i \le k}$, then $\mathcal{M}^{\times}, \rho^{\times} \models x:A$
- ▶ If $x:A \in (\Delta_i)_{i < k}$, then $\mathcal{M}^{\times}, \rho^{\times} \not\models x:A$

Therefore, $\mathcal{M}^{\times}, \rho^{\times} \not\models \mathcal{S}$.

```
Proof search for \Rightarrow 0:\Diamond \square p in labK \cup \{t, 4\}
       0R2, 2R2, 1R2, 1R1, 0R1, 0R0 \Rightarrow 0: \Diamond \Box p, 0: \Box p, 1: p, 1: \Box p, 2: p, 2: \Box p
  \Diamond_{\mathsf{R}}
            2R2, 0R2, 1R2, 1R1, 0R1, 0R0 \Rightarrow 0: \Diamond \Box p, 0: \Box p, 1: p, 1: \Box p, 2: p
                2R2, 1R2, 1R1, 0R1, 0R0 \Rightarrow 0:\Diamond \Box p, 0:\Box p, 1:p, 1:\Box p, 2:p
                     \overline{1R2,1}R1,0R1,0R0 \Rightarrow 0: \Diamond \Box p,0: \Box p,1:p,1: \Box p,\underline{2:p}
                 \BoxR
                             1R1,0R1,0R0 \Rightarrow 0: \Diamond \Box p,0: \Box p,1: p,1: \Box p
                                  1R1,0R1,0R0 \Rightarrow 0:\Diamond \Box p,0:\Box p,1:p
                                  \Box_{\mathsf{R}}
                                                  R
                                                                        R
                                                          ⊮ □p
```


In the literature:

- ▶ [Negri, 2005]: Minimality argument for some logics in the S5-cube (K, T, S4, S5);
- ▶ [Negri, 2014]: Termination for intermediate logics;
- ▶ [Garg, Genovese and Negri, 2012]: Termination for multi-modal logics (without symmetry).

As a case study, we shall consider labK \cup {t, 4}, shortened in labS4.

Theorem (Proof or Finite Countermodel). For $S = x:\Gamma \Rightarrow x:A$ labelled sequent, either $\vdash_{labS4} S$ or S has a finite countermodel satisfying ref, tr.

$$\begin{array}{c} \inf \overline{\mathbb{R}, x : p, \Gamma \Rightarrow \Delta, x : p} \\ \mathbb{R}, x : A \land B, x : A, x : B, \Gamma \Rightarrow \Delta \\ \mathbb{R}, x : A \land B, x : A, x : B, \Gamma \Rightarrow \Delta \\ \mathbb{R}, x : A \land B, x : A \land B, \Gamma \Rightarrow \Delta \\ \mathbb{R}, \Gamma \Rightarrow \Delta, x : A \land B, x : A \land B, x : A \land B, x : A \land B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, x : A \land B, x : A \land B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \mathbb{R}, X : A \lor B, x : A \land B \\ \mathbb{R}, x : A \lor B, x : A \land B \\ \mathbb{R}, x : A \lor B, \Gamma \Rightarrow \Delta \\ \mathbb{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \mathbb{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \mathbb{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \mathbb{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \mathbb{R}, x : A \rightarrow B, x : B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow B \\ \mathbb{R}, \Gamma \Rightarrow \Delta, \chi$$

- Rules should be applied exhaustively
- Rules shouldn't be applied redundantly
- We need to limit applications of □R, ◇L

Intuitively: A rule application R is redundant at a sequent \mathcal{S} if \mathcal{S} already contains the formulas that would be introduced in one premiss of R.

Formally: A rule application R to formulas in S = R, $\Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied:

- (ref) If x occurs in S, then xRx occurs in R;
- (tr) If xRy and yRz occur in \mathcal{R} , then xRz occurs in \mathcal{R} ;
- (\land_L) If $x:A \land B$ occurs in Γ , then both x:A and x:B occur in Γ ;
- (\land_R) If $x:A \land B$ occurs in \triangle , then x:A occurs in \triangle or x:B occur in \triangle ;
- (\Box_L) If xRy occurs in $\mathcal R$ and $x:\Box A$ occurs in Γ , then y:A occurs in Γ ;
- (\square_R) If $x:\square A$ occurs in Δ , then there is a \underline{y} such that $\underline{x}\underline{R}\underline{y}$ occurs in $\mathcal R$ and $\underline{y}:A$ occurs in Δ .

- Rules should be applied exhaustively
- Rules shouldn't be applied redundantly
- ightharpoonup We need to limit applications of \Box_R, \diamondsuit_L

```
κνα iβ

β { G | κ: G ∈ Γ } = { G | α: G ∈ Γ }

β { D | κ: D ∈ Δ } = { D | α: D ∈ Δ }
```

Intuitively: A rule application R is redundant at a sequent S if S already contains the formulas that would be introduced in one premiss of R.

Formally: A rule application R to formulas in S = R, $\Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied:

- (ref) If x occurs in S, then xRx occurs in R;
- (tr) If xRy and yRz occur in \mathcal{R} , then xRz occurs in \mathcal{R} ;
- $(Λ_L)$ If x:A ∧ B occurs in Γ, then both x:A and x:B occur in Γ;
- (\land_R) If $x:A \land B$ occurs in \triangle , then x:A occurs in \triangle or x:B occur in \triangle ;
- (\Box_L) If xRy occurs in R and $x:\Box A$ occurs in Γ , then y:A occurs in Γ ;
- (\square_R) If $x:\square A$ occurs in Δ , then either
 - a) there is a k such that kRx occurs in R and $k \sim x$; otherwise
 - b) there is a y such that xRy occurs in \mathcal{R} and y:A occurs in Δ .

If a) holds, we say that x is a \Box -copy of k at S.

Does $\Gamma \models_{\{\text{ref,tr}\}} A \text{ hold}$?

- 0. Place $S_0 = x:\Gamma \Rightarrow x:A$ at the root of \mathcal{T} .
- 1. For every topmost sequent S_i of \mathcal{T} , apply as much as possible non-redundant instances of the rules: ref. tr. \land 1, \land 2, \lor 1, \lor 2, \rightarrow 3, \rightarrow 3, \rightarrow 4.
- 2. If every topmost sequent of \mathcal{T} is initial, terminate. $x:\Gamma \Rightarrow x:A$ is provable in labS4.
- 3. Otherwise, pick a non-initial topmost sequent S_k of \mathcal{T} .
 - a) If there are non-redundant □_R- or ⋄_L- rule instances that can be applied, apply one such instance. Go to Step 1.
 - b) Otherwise terminate. $\rightsquigarrow x:\Gamma \Rightarrow x:A$ is not provable in labS4.

A countermodel \mathcal{M}^{\times} for a sequent $\mathcal{S} = \mathcal{R}, \Gamma \Rightarrow \Delta$ which is non-initial and to which only redundant rules can be applied is defined as follows:

- $V W^{\times} = \{x \mid x \text{ occurs in } S\}$:
- ▶ To define R[×], first define:

$$- \underset{\stackrel{}{\times} \mathbb{R}_{1}^{\times} y}{\times} \text{ iff } \underset{\stackrel{}{\times} \mathbb{R} y}{\times} \text{ occurs in } \mathcal{R};$$

$$- \underset{\stackrel{}{\times} \mathbb{R}_{2}^{\times} x}{\times} \text{ iff } \underset{\stackrel{}{\times} \text{ is a } \square\text{-copy (or \diamond-copy) of } \underline{k}}.$$

 \mathcal{R}^{\times} is the reflexive and transitive closure of $R_1^{\times} \cup R_2^{\times}$.

It is easy to verify that \mathcal{M}^{\times} satisfies the frame conditions ref, tr.

- Truth Lemma. Take $\rho^{\times}(x) = x$, for each label x occurring in S. Then:
 - ▶ If *x*:*A* occurs in Γ, then \mathcal{M}^{\times} , $\rho^{\times} \models x:A$
 - ▶ If x:A occurs in Δ , then $\mathcal{M}^{\times}, \rho^{\times} \not\models x:A$

Does $\models_{\{ref,tr\}} \Diamond \square p$ hold?

Example # 1 Previous example, correct version: rule DR to 1: Dh

is redundant because of b); froof search staps.

Does $\models_{\{ref,tr\}} \Diamond \square p \text{ hold?}$

$$\diamond_{\mathsf{R}} \frac{1R1,0R1,0R0 \Rightarrow 0: \diamond \Box p, 0: \Box p, 1: p, 1: \Box p}{1R1,0R1,0R0 \Rightarrow 0: \diamond \Box p, 0: \Box p, 1: p} \frac{0R1,0R0 \Rightarrow 0: \diamond \Box p, 0: \Box p, 1: p}{\diamond_{\mathsf{R}} \frac{0R0 \Rightarrow 0: \diamond \Box p, 0: \Box p}{\diamond_{\mathsf{R}} \frac{0R0 \Rightarrow 0: \diamond \Box p}{\mathsf{ref} \frac{0R0 \Rightarrow 0: \diamond \Box p}{\Rightarrow 0: \diamond \Box p}}$$

$$\begin{array}{c|cccc}
\hline
0 & R & 1 \\
 & & \downarrow & \Box p \\
 & & \downarrow & \Box p \\
 & & \downarrow & D \\
\end{array}$$

Example # 2: Does $\models_{\{ref,tr\}} \Diamond \Box \Box p$ hold?

Termination. The algorithm terminates in a finite number of steps, yielding either a proof or a sequent from which a countermodel can be extracted.

Theorem (Proof or Finite Countermodel). For $S = x:\Gamma \Rightarrow x:A$ labelled sequent, either $\vdash_{labS4} S$ or S has a finite countermodel satisfying ref, tr.

Theorem (Semantic completeness). If $\Gamma \models_{\{\text{ref},\text{tr}\}} A$ then $\vdash_{\text{labS4}} x:\Gamma \Rightarrow x:A$.

Corollary. S4 has the finite model property.

Corollary. The validity problem of S4 is decidable.

Properties of labK $\cup X$

	fml. interpr.	invertible rules	analyti- city	termination proof search	counterm.	modu- larity
$labK \cup X$	no	yes	yes	yes, for most	yes, easy!	yes

- 1. Check whether $\models_{\{\text{ref},\text{tr}\}} \Diamond \Box (p \lor \Box (p \to \bot))$ using the terminating algorithm for S4. If the formula is not valid, produce a countermodel.
- 2. Let \mathcal{M}^{\times} be the countermodel for a sequent \mathcal{S} as defined in Slide 20. Verify that \mathcal{M}^{\times} satisfies the frame conditions ref, tr. Then, for $\rho^{\times}(x) = x$, for each label x occurring in \mathcal{S} , verify that the Truth Lemma holds, for the cases:
 - ▶ If $x: \Box A$ occurs in Γ , then $\mathcal{M}^{\times}, \rho^{\times} \models x: \Box A$
 - ▶ If $x: \Box A$ occurs in Δ , then $\mathcal{M}^{\times}, \rho^{\times} \not\models x: \Box A$