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The plan

> Labelled sequent calculus for K
> Frame conditions: a general recipe

> Semantic completeness
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From geometric axioms to rules

Geometric implications can be expressed as conjunctions of geometric
axioms, i.e., closed formulas of £(c) having the form:

V)?(P - (3(Q) v v 3ym(om)))

olio oimk
> X, V1,...,Ym are (possibly empty) vectors mbles
> m>0;
> P, Qy,...,Qn are (possibly empty) conjunctions of atomic formulas
of L(o);
> Vi,...,¥Ym do not occur in P.

Geometric axioms can be turned into sequent calculus rules:

51[21/71]9n7r:>A Em[zm/y)m]»ﬂ,r:A
Mnr=A

> [1is the multiset of atomic formulas in P;
> =, is the multiset of atomic formulas in Q;, for each i < m;
> 21,...,Zmdo notoccurin I U A,
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From geometric axioms to labelled rules

Geometric implications can be expressed as conjunctions of geometric
axioms, i.e., closed formulas of £(c) having the form:

Talie £(R) o
(P (AR
olinoinnk Rixg)
> X, V1,...,Ym are (possibly empty) vectors ombles
> m>0;
> P, Qy,...,Qn are (possibly empty) conjunctions of atomic formulas
of L(o);
> Vi,...,¥m do not occur in P.
Geometric axioms can be turned into sequent calculus rules:
- 12 /= — =2 = {’QM’ M
SA[Z /LT =248 o ZplZa/Yal.NT = A { o
GA STRUCTURAL
|_|, M= A RUIE : o~
wude o
> IMis the multiset of atomic formulas in P; suefationol
okervn

> =, is the multiset of atomic formulas in Q;, for each i < m;
> 21,...,Zmdo notoccurin I U A,
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Examples
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GAE1[Z1/}71],|_|,R,FZ>A s ZplZmYm], LRT = A
MNRIM=A
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Labelled calculi for the S5-cube

xRy,R, = A XBRx, R, = A yRx,xRy,R, T = A
ser ———————— y fresh ref

R = A RT=A " XRy,RT = A

xRz, xRy,yRz,R, = A yRz,xRy,xRz,R, = A
tr
xRy, yRz,R, = A o xRy, xRz,R,T = A

For X € {d,t,b, 4,5}, labK U X is defined by adding to labK the rules for
frame conditions corresponding to elements of X, plus the rules obtained
by to satisfy the|closure conditior} (contracted instances of the rules):
2,5: U

yRy, xRy, xRy, R, = A yRy,xRy,R,I = A
euc N> c’

= XRy,xRy,R.[ = A =T XRy.RT > A

Example: labK U {5} denotes the proof system labK U {euc, euc’}.

We denote by MS derivability of labelled sequent S in labK U X.

—

{ = 02:/9:1,%4, ., 7P P RT AA T { = [2:/y:1,P1,.., 7, P, QT s A i

vy
Py, PP P R 2A Py, P, P RT2A
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Soundness and completeness of labK U X

For X € {d,t,b, 4,5}:

Theorem (Soundness). If Figpkux R, = Athen=x R, = A.

Example. If the premiss of rule ser is valid in all serial models, then its
conclusion is valid in all serial models.

(foyZR MN=A -
ser y fresh

R,IT=A

Lemma (Cut). The cut rule is admissible in labK U X:

RI=AxA xAR,["=A
RR,[,["=> AN

cut

For I set of formulas and x:I" = {x:G | for each G € I'}:

Theorem (Syntactic Completeness). If I Fxux A then kigpkux X:I = x:A.
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Beyond geometric axioms

> Systems of rules , to capture theories / logics
characterized by generalized geometric implications:

Ghy, = VX(P > (37:(Q1) v+ v Fn(Qn))
GA; = V)?(P > (37 /\ GAo) V- v (N GAO)))

(P = @A A Y v 3 GA0)

>U

GAn+1 =V

forki,...,km=n

Systems of rules cover all systems of normal modal logics r
axiomatised by Sahlqvist formulas.

> Goddel-Léb provability logic (GL):
Transitivity: R is transitive
-p Converse well-foundedness: there are no infinite R-chains
: labelled proof system for GL!
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labK U X: main results

Xe {d,t,8 453
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Semantic completeness



Proofs or countermodels

For X € {d,t,b, 4,5}:

Theorem (Proof or Countermodel). For S labelled sequent, either Figpkux S
or S has a countermodel satisfying the frame conditions in X.

Pacof (rKetcR) . Defime o @wg_mca (,zg,;&-’mm ( oot iolflomentinrsy

}(ng /mc/‘a Am @QKUX :

ALGORTH Y
tﬁe ol WHZM WW o~
te oot gwbcagm’&ox tramchy o
cclwets o dots ek Jce,w«vlmodte
08K v X )rw.oog < P
\\\\\\\\\~ < S 7 : E 7
) S S
Cde coudemm:  puQimite coudemm.
i o el
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A semantic proof of completeness

For X c {d,t,b,4,5},
[" set of formulas and x:[" = {x:G | for each G € I'}:

Theorem (Semantic completeness). If [ Ex A then Fgapkux X:[ = X:A.

%og. We fuowe the conctaaporitive:
§ Vopuox 20 2 xih, o TR

Q: '(',e\&t(.
By 0o 'Pmocg o Comtemmodel Teatom, 1 T D %4 fovy o tmmtbermodles

bz K5 e X amol P Ak 0ok -
B % E w6, fu ol 2 GET, and
b XX, 0% F i

By clefimitiom®
B ek G, fu ol GE T, omel
b, () F R

By de?‘-&;kw °f eo?acw@ comequence, [ 7 A
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Proof search algorithm for labK U X

Given a sequent Sy, place Sy at the root of 7.

. For every rule R € {A_, AR, VL, VR, =L, —r, 0L, Or, OL, Or}, apply the

following:

a) If every topmost sequent of 7~ is initial, terminate.
~» Sy is provable in labK U X, and 7__defines a labK U X proof for it.
b) Otherwise, write above each non-initial sequent S; of 7 the sequent(s)
obtained by exhaustively apply rule@_to Si.

For every rule R € {ref, tr, sym, ser, euc} in labK U X (if any), apply the
following:

a) If every topmost sequent of 7~ is initial, terminate.
~» Sy is provable in labK U X, and 7~ defines a labK U X proof for it.
b) Otherwise, write above each non-initial sequent S; of 7~ the sequent(s)
obtained by w&m Si.

. If there is a topmost sequent S; of 7~ which is non-initial and to which none

of the stepsin 1 and 2 applie_a, then terminate.

~» Sy is not provable in labK U X, and the branch|$8>)of 7~ to which S;
belongs defines a countermodel for S,. =
Otherwise, go to step 1.
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Back to the theorem

Theorem (Proof or Countermodel). For S labelled sequent, either Figpkux S
or S has a countermodel satisfying the frame conditions in X.

Proof. Run the proof search algorithm for labK U X taking So = S. Then:
> If the algorithm terminates in Step 1 or Step 2, then Fapkux S.

> If the algorithm terminates in Step 3: We construct a countermodel
for S from the finite branch 8> produced by the algorithm.

> If the algorithm does not terminate, then all branches of 7~ are
infinite. We construct a countermodel for S from any infinite branch
B*of T
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Constructing the countermodel for S

Let 8% = (R;,[i = Aj)i« be a finite branch in 7~ produced by the
algorithm (k € N), or an infinite branch in 7 (k = w).
In both cases, S = Ry, [0 = A,.
We construct a countermodel M* from B> as follows:
> W>* = {x | x occurs in B*};
> xR*y iff xRy occurs in (R;)i<;
> v¥(p) = {x | x:p occurs in (I)j<k}.

It is easy to verify that M* satisfies the frame conditions X.

Truth Lemma. Take p*(x) = x, for each label x occurring in 8. Then:

> If X:A € (F,-),-<k, then Mx’px E x:A
> If X:A € (A,’),’<k, then MX,pX = XA

Therefore, M*,p* I~ S.
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Example

Proof search for = 0:¢0p in labK U {t, 4}

0R2,2R2,1R2,1R1,0R1,0R0 : 0:o0p, 0:0p, 1:p, 1 :Dp,Z:p,é:El@
2R2,0R2,1R2,1R1,0R1,0R0 = 0:¢0p, 0:0p, 1:p, 1:0p, 2:p
2R2,1R2,1R1,0R1,0R0 = 0:¢0p, 0:0p, 1:p, 1:0p, 2:p
1R2,1R1,0R1,0R0 = 0:00p, 0:0p, 1:p, 1 :|:1p,__2_:_e
- 1R1,0R1,0R0 = O:<>|:1p,0:|:1p,1:pﬁ:|:@
1R1,0R1,0R0 = Q_:_<>_D_Q,0:Dp,l:p
0R1,0R0 = o:gup,o@tp
- 0RO = 0:00p, 0:0p
" 0R0 = 0:00p,,

R0: 00
@ R @ R @

0 ¥ OOp ¥ Op ¥ Op
¥ Op ¥p ¥p

—_—
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Bounding proof search



Sources of non-termination, 1

¥

C91 Dq,2q,2 q,2:q =

CJH 09,2:0,2:0 =

ser i
2R3,1R2,0R1 = 0:p

ser

ser

1R2,0R1 = 0:p
OR1=0:p

= 0:p
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Sources of non-termination, 2

""0R2,1R2,0R1,0R0 = 0:00p,0:0p, 1:p, 1:0p, 2:p, 2:0p
" O0R2,1R2,0R1,0R0 = 0:00p, 0:0p, 1:p, 1:0p, 2:p

" 1R2,0R1,0R0 = 0:00p, 0:0p, 1:p,1:0p, 2:p

0R1,0R0 = O:OD;J,_E:Ep, 1:p,1:0p

OR1,0R0 :\(O:Omp,bzmp, 1:p

0RO = 0:¢0p, 0:0p
0RO = 0:¢0p

= 0:00p

Or

Or

OR

ref
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Can we bound proof search?

In the literature:

> : Minimality argument for some logics in the S5-cube (K,
T, S4, S5);

> : Termination for intermediate logics;

> : Termination for multi-modal logics ‘

(without symmetry).

As a case study, we shall consider labK U {t, 4}, shortened in labS4.

Theorem (Proof or Finite Countermodel). For & = x:[ = x:A labelled
sequent, either +izps4 S or S has a finite countermodel satisfying ref, tr.
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A cumulative version of labS4: labS4°

init
" R, x:p, = A, x:p . R x: L, = A
R, Xx:AAB,x:A,x:B,T = A ‘R,I’zAlx:A \/BZX:A,X:B

T R XAABT = A " R,r:m@

RIT=AxAANBXxA RT=AXxAAB,xB
RIT=AXxAANB
RxAVB,xAIT=>A RxAVBxBTl=A
R,xAVB,I=A
R x:A—-BT=>AXxA RxA-BxBIlI=A
R, x:A—-B, = A
R, x:A, I = A, x:A— B, x:B
RI=AxA->B
XRy,R,y:A, x:0A, T = A xRy,R,T = A, x:0A,y:A
M T XRY. R xDALT = A T RIsAxoA "
XRy,R, y:A,x:0A, I = A XRy,R,T = A, x:0A,y:A

oL y fresh OR

R, x:OA, T = A XRy, R, = A, x:0A

AL

VL

—L

—R
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Main ideas

> Rules should be applied exhaustively
> Rules shouldn’t be applied redundantly
> We need to limit applications of Og, ¢ 0~

Intuitively: A rule application R is redundant at a sequent S if S already
contains the formulas that would be introduced in one premiss of R.

Formally: A rule application R to formulas in S = R, = A is redundant
if condition (R) is satisfied:
(ref) If x occurs in S, then xRx occurs in R;
(tr) If xRy and yRz occur in R, then xRz occurs in R;
(AL) I x:A A B occurs in T, then both x:A and x:B occur in T;
(AR) If x:A A B oceurs in A, then x:A occurs in A or x:B occur in A;
(oL) If xRy occurs in R and x:0A occurs in I, then y:A occurs in T;
(or) If x:0A occurs in A, then there is a y such that xRy occurs in R and
~ y:Aoccursin A. - -

=
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Main ideas

Ko o /l%
> Rules should be applied exhaustively b {GlwGe r}-{6lx6e 3
> Rules shouldn’t be applied redundantly

> We need to limit applications of Og, ¢, | » 0 1%:P € Af={Dl%: Dedd

Intuitively: A rule application R is redundant at a sequent S if S already
contains the formulas that would be introduced in one premiss of R.

Formally: A rule application R to formulas in S = R, = A is redundant
if condition (R) is satisfied:
(ref) If x occurs in S, then xRx occurs in R;
) If xRy and yRz occur in R, then xRz occurs in R;
(AL) lf x:A A B occeursin T, then both x:A and x:B occur in T;
(AR) If x:A A B oceurs in A, then x:A occurs in A or x:B occur in A;
) If xRy occurs in R and x:0A occurs in T, then y:A occurs in T;
) If x:0A occurs in A, then either
a) there is a k such that kRx occurs in R and k ~ x; otherwise
b) there is a y such that xRy occurs in R and y:A occurs in A.

If a) holds, we say that x is a O-copy of k at S.
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A terminating proof search algorithm for labS4

Does I Fretp A hold?

0. Place Sy = x:I' = x:A atthe root of 7.
1. For every topmost sequent S; of 7, apply as much as possible
non-redundant instances of the rules:
ref, tr, AL, AR, VL, VR, =L, =R, OL, OR-
2. If every topmost sequent of 7 is initial, terminate.
~» Xx:[ = x:A is provable in labS4.
3. Otherwise, pick a non-initial topmost sequent Sy of 7.
a) If there are non-redundant Og- or ¢ - rule instances that can be

applied, apply one such instance. Go to Step 1.
b) Otherwise terminate. ~» x:[ = x:A is not provable in labS4.
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Countermodels

A countermodel M* for a sequent S = R, = A which is non-initial and
to which only redundant rules can be applied is defined as follows:

> WX = {x| x occurs in S};
> To define R*, first define:
. — xR}y iff xRy occurs in R;
¥R, K™ — kR%x iff x is a O-copy (or ©-copy) of k.
R* is the reflexive and transitive closure of R} U Ry
> v*(p) = {x | x:p occurs in I}

It is easy to verify that M* satisfies the frame conditions ref, tr.

@ Truth Lemma. Take p*(x) = x, for each label x occurring in S. Then:
> If x:A occurs in I, then M*, p* E x:A
> If x:A occurs in A, then M*, p* I~ x:A

20/23















Example 7o, examw i» mok conect: nee mex bt 2 jager

Does =(refi ©0OP hold?

0R2,2R2,1R2,1R1,0R1,0R0 = 0:¢0p,0:0p, 1:p, 1:0p, 2:p, 2:0p
2R2,0R2,1R2,1R1,0R1,0R0 = 0:00p, 0:0p, 1:p, 1:0p, 2:p
2R2,1R2,1R1,0R1,0R0 = 0:¢0p, 0:0p, 1:p, 1:0p, 2:p
1R2,1R1,0R1,0R0 = 0:00p, 0:0p, 1:p, 1:0p, 2:p
1R1,0R1,0R0 = 0:00p,0:0p, 1:p,1:0p ¢
1R1,0R1,0R0 = 0:¢0p, 0:0p, 1:p j

Or

?
0R1,0R0 = O:ODP’O:DP,1ZP noag bema
bR woulek A“:a)(\
0RO = 0:00p, 0:0p fone : 10e
OR .
ref —ORO = O'ODp aﬂ,&.uxﬁom og

=0:000 mab Og to 4:0 %
e | R
M&‘ £» neclumolomt,

R Gecame of §) -
@ r U\ R 4R 4 andd
¥ oOp ¥ Op ¥ Op 4:p€A

¥ Op ¥p ¥
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Example #1 TPatwiouws examy&, conect vemion: wh Dg to 4:0

in nedimolomk  fecaunn
"g 8‘), MMJ 4"%».

Does Eretry ©Op hold?

1R1,0R1,0R0 = 0:¢0p, 0:0p, 1:p,1:0p
1R1,0R1,0R0 = 0:¢0p, 0:0p, 1:p
0R1,0R0 = 0:00p, 0:0p,1:p
0RO = 0:¢0p, 0:0p
0RO = 0:¢0p
= 0:00p

¥ O0p ¥ Op
¥ Op ¥p

Or

Or

Or

ref















Example # 2: Does =ty ©0OO0p hold?

0R3,3R3,2R3,2R2,0R2,1R2,1R1,0R1,0R0 = 0:000p, 0:00p, 1:0p, 1:00p, 2:p, 2:00p, 3:0p, 3:00p
0R3,3R3,2R3,2R2,0R2,1R2,1R1,0R1,0R0 = 0:¢00p, 0:00p, 1:0p, 1:00p, 2:p, 2:00p, 3:0p
3R3,2R3,2R2,0R2,1R2,1R1,0R1,0R0 = 0:¢00p, 0:00p, 1:0p, 1:00p, 2:p, 2:00p, 3:0p
2R3,2R2,0R2,1R2,1R1,0R1,0R0 = 0:¢00p, 0:00p, 1:0p, 1:00p, 2:p, 2:00p, 3:0p
2R2,0R2,1R2,1R1,0R1,0R0 = 0:00oOp, 0:00p, 1:0p, 1:00p, 2:p, 2:00p
2R2,0R2,1R2,1R1,0R1,0R0 = 0:¢0op, 0:00p, 1:0p, 1:00p, 2:p
2R2,1R2,1R1,0R1,0R0 = 0:¢00p, 0:00p, 1:0p, 1:00p, 2:p
1R2,1R1,0R1,0R0 = 0:¢00p, 0:00p, 1:0p, 1:00p, 2:p
1R1,0R1,0R0 = 0:¢00p, 0:00p, 1:0p, 1:00p
1R1,0R1,0R0 = 0:000p, 0:00p, 1:0p
0R1,0R0 = 0:000Op, 0:00p, 1:0p

Or

ref

Or

©OR

ref

OR

ref

Or

., OR0 = 0:000p, 0:00p wh Og 4o
0RO Gomp %004 &
= 0:000p seeolumol
Cecaume qf a),
R .
340 a (-Cohy
@ 1i @ 3 c/g 4.
R o R & R
¥ oOop ¥ Oop ¥ p ¥ 0p















Summing up

Termination. The algorithm terminates in a finite number of steps, yielding
either a proof or a sequent from which a countermodel can be extracted.

Theorem (Proof or Finite Countermodel). For S = x:[ = x:A labelled
sequent, either rzps4 S or S has a finite countermodel satisfying ref, tr.

Theorem (Semantic completeness). If [ =iy A then Fapss X:[ = XA,

Corollary. S4 has the finite model property.

Corollary. The validity problem of S4 is decidable.

@ 154
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Properties of labK U X

fml. invertible | analyti- | termination | counterm. | modu-
interpr. rules city proof search constr. larity
labK U X no yes yes yes, for most | yes, easy! yes

—
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Exercises for Lecture 2

1. Check whether =g ©O(p Vv O(p — L)) using the terminating
algorithm for S4. If the formula is not valid, produce a countermodel.

2. Let M* be the countermodel for a sequent S as defined in Slide 20.
Verify that M* satisfies the frame conditions ref, tr.
Then, for p*(x) = x, for each label x occurring in S, verify that the
Truth Lemma holds, for the cases:
> If x:0A occurs in I, then M*, p* = x:0A
> If x:0A occurs in A, then M*, p* | x:0A



